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The role of various techniques for visualization of high-dimensional data is demonstrated in the context of
combinatorial high-throughput experimentation (HTE). Applying visualization tools, we identify which
constituents of catalysts are associated with final products in a huge combinatorially generated data set of
heterogeneous catalysts, and catalytic activity regions are identified with respect to pentanary composition
spreads of catalysts. A radial visualization scheme directly visualizes pentanary composition spreads in
two-dimensional (2D) space and catalytic activity of a final product by combining high-throughput results
from five slate libraries. A glyph plot provides many possibilities for visualizing high-dimensional data
with interactive tools. For catalyst discovery and lead optimization, this work demonstrates how large
multidimensional catalysis data sets are visualized in terms of quantitative composition activity relationships
(QCAR) to effectively identify the relevant key role of compositions (i.e., lead compositions) of catalysts.

Introduction

Combinatorial approaches in materials design and syn-
thesis have been increasingly used for the systematical
finding of new materials, but data analysis generated com-
binatorial approaches are very limited due to the huge amount
of multivariate characteristics of the data sets. This disparity
between high-throughput synthesis and low-throughput data
interpretation is still problematic in combinatorial materials
science. To resolve this issue, high-throughput data for
material discovery can be interpreted utilizing visualization
techniques describing complex hidden relationships, patterns,
QCAR, or outliers in the data. The importance of visualiza-
tion in science cannot be overemphasized because it provides
a direct method to depict scientific data to better understand
physical meanings. Visualization extends beyond displaying
data to include the transformation of huge interrelated
multivariate data from combinatorial libraries into informa-
tion space.1

However, it is not a trivial task to find informative patterns
by representing relative contributions in few dimensions
because of the multi (or high)-dimensional nature of high-
throughput data sets. An example of a direct visualization
method is the traditional Cartesian coordinate mapping of
data in x- and y- or x-, y-, and z-space using axes that are
orthogonal to each other. To overcome the limitations of

Cartesian coordinates in displaying multidimensional data,
a scatterplot matrix consisting of possible arrays of bivariate
plots has been used, although the scatterplot matrix still must
be considered from many different projections. An example
of an indirect data mapping method to handle high-
dimensional data is data mining techniques for dimensionality
reduction such as principal component analysis (PCA).
Interpreting complex data with PCA, however, is cumber-
some because of the difficulty in transforming the data in
principle component space back into the experimental
framework. The principal components explain data trends
of observed random variables in terms of a reduced number
of unobserved variables, which are a linear combination of
the original variables that have been transformed onto a new
coordinate system based on the order of variance in the data.
Therefore, it is sometimes more convenient for interpretation
to use alternative ways of visualization for multidimensional
data sets without dimensionality reduction.

Information visualizations of multidimensional data sets
have been recognized as very crucial to depicting multiple
gene expressions in a field of biotechnology or genetics.
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Scheme 1. Detected Products of Propene Oxidation at 350
°C Using 1001 Catalysts Consisting of Mixed Metal Oxides
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There are some pioneering works for visualization of high-
dimensional or combinatorially derived data in chemistry;2-5

however, visualization of materials science data generated
from a combinatorial approach is still in the early stages
despite combinatorial approaches with high-throughput syn-
thesis in materials design and synthesis developing quickly.
As a test bed in this paper, we provide a demonstration of
different sophisticated visualization strategies of high-
dimensional catalysis data obtained through combinatorial
experiments to visualize composition-activity relationships,
which are highly desirable to understand heterogeneous
catalysts. The purpose of this study is not to develop new
catalysts but to demonstrate how to explain and extract
composition-activity relationships in the context of catalysts
with different visualization methods, such as heat maps and
parallel coordinates, in combinatorially derived data sets.
Using a radial visualization technique, composition-catalytic

activity relationships are also visualized with respect to
combinatorial arrays in a slate library used for data generation.

Experimental Section

All data considered here have been obtained by high-
throughput screening of a complete pentanary composition
spread consisting of five chemical elements (Cr, Mn, Co,
Te, and Ni) as oxides in a 10 mol % wide variation of
compositions (more precisely, the final catalysts consist of
mixed metal oxides in predefined ratios). Each sample has
the following composition.

A variation of five elements in this way yields 1001
samples, including binary, ternary, and quaternary samples.
In addition, the pure metal oxides of Cr, Mn, Co, Te, and
Ni have been considered as part of the search space. The
catalysts, appearing in the shape of powders, have been

Figure 1. Slate library and results of high-throughput screening of the 5 libraries. Two hundred wells on each slate library are filled with
catalyst samples; 3 are filled with reference samples (Hopcalite), and 3 wells are left empty for additional reference. Five different slate
plates were used for full screening of a complete pentanary composition spread (i.e., 1001 catalysts). The color codes the size of the
detected GC signal for acrolein. Best catalysts (samples) appear in (dark) red.

Figure 2. An intuitive example of a heat map. A heat map displays
the data table as grids of rectangular shapes and provides the
associations of samples and variables (properties). On the basis of
the color codes changing from green to white to red in the figure,
sample 1 has a high value of property 4 (Var 4), while sample 3
has a low value of Var 3. Heat maps usually include hierarchical
clusters of properties and instances using dendrograms. While
samples 2 and 4 are similarly associated with respect to the four
variables, variables 1 and 2 have similar behaviors for the given
four samples.

Figure 3. An N-dimensional data tuple in parallel coordinates. Each
vertical line is an axis equivalent to each dimension (variable), while
polygonal lines connect each axis along corresponding dimensional
values (c1, c2,..., cN), of each sample.13 Unlike heat maps, parallel
coordinates mainly capture associations of variables instead of
samples by creating polygonal lines through variables.

CraMnbCocTedNie with a + b + c + d + e )
1 and a, b, c, d, e in [0, 1 mol %]
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synthesized using a high-throughput synthesis route, follow-
ing an acid-catalyzed sol-gel process. The following precur-
sors have been used: Cr(III)-propionate, Co(II)-propionate,
Ni(II)-propionate, Mn(II)-propionate, and telluric acid. All
solid metal precursors were dissolved in methanol in a
concentration of 0.5 mol/L. The precursor solutions were
mixed by means of a dispensing robot in appropriate ratios
to give the final desired composition. Additionally, propionic
acid (PA), the complexing agent 4-hydroxyl-4-methyl-2-
pentanone (CA) and methanol have been dosed and added
by the robot. The molar ratios of the additives relative to
the sum of the base ions (1) was 0.3 PA/6 CA/47,5 MeOH.
After the gelation procedure, the samples have been calcined
at 400 °C to remove remaining solvent. Finally, the catalyst
samples have been screened for catalytic activity in the
oxidation of propene at 350 °C as a model reaction in a high-
throughput test reactor system. Special attention has been
paid to the problem of comparability of the many catalyst
samples generated. All syntheses have been obtained by a
single sol-gel procedure highly tolerant to all compositional
changes applied. Gelation time, calcination, and treatments
have been carried out in parallel, so highly amorphous porous
mixed oxides of comparable microstructure are generated.
The detailed setup of the test reactor has been already
described in refs 6-8, while a more detailed description of
the catalyst preparation can be found in the Ph.D. thesis of
one of the authors.9 Scheme 1 summarizes the chemical
reaction studied and also gives an overview on all detected
products that have been monitored for each sample by gas-
chromatography (GC) measurements. The data we are

dealing with in this study exclusively focus on the formation
of acrolein among all products. Acrolein was chosen because
of its high abundance in the products and its importance as
a base chemical. For the screening itself, the 1001 samples
have been randomly split and transferred to five identical
slate libraries that contain 206 wells to hold the catalyst
powders (Figure 1).

The high-throughput screening approach chosen here
generates large amounts of experimental data that need to
be analyzed and interpreted. In this study, we demonstrate
the application of visualization techniques to this combina-
torial catalyst data set as a case study. Figure 1 depicts the
raw data from high-throughput screening. Each slate plate
is transferred to the reactor system such that each well serves
as a small reaction chamber where the gaseous reaction takes
place. A mixture of propene and synthetic air is passed over
the library at 350 °C. After a defined reaction time, the
product gas mixture leaving the reaction chamber is analyzed
by GC measurements for the products listed in Scheme 1.
The color-coded GC signals for the selected acrolein are
given in Figure 1. Red indicates a large GC signal, while
blue samples represent only little acrolein in the product gas
mixture. The aim of these experiments has been to indentify
samples that lend themselves to the selective oxidation of
propene to acrolein as well as to identify correlations between
the chemical composition of the materials and their catalytic
performance. Clearly, this visualization identifies the relative
activity of all samples on the library, but neither identity of
the samples nor correlations of activity, selectivity, and
chemical composition are visible.

Methods

Various visualization techniques have been developed for
visualizing high-dimensional data. The three popular schemes
used in this paper are heat maps, parallel coordinates, and
radial visualizations. It is demonstrated how these visualiza-
tions help to identify composition-activity relationships from
the measured catalytic activities to four products and the
composition spreads of different constituents of catalysts.
All of these visualization schemes map the original high-
dimensional feature space onto 2D space without any feature

Figure 4. (A) Radial visualization mapping of an 8D space onto a 2D space. 8D space generates 8 DAs and a data point Qi is connected
to each DA by eight springs like a trampoline. (B) An example of radial visualization for a composition spread of pentanaries with 10%
wise compositional increments. Some interesting points are marked for convenience. Points E, F, G, and H are for 90% of Ni while points
I, J, K, and L are for 80% of Ni. With the order of (Mn, Ni, Te, Co, Cr), each point is assigned as follows: point A ) (0.2,0.2,0.2,0.2,0.2),
B ) (0,0,0,1,0), C ) (0.4,0.3,0,0,0.3), D ) (0,0.3,0.4,0.3,0), E ) (0.1,0.9,0,0,0), F ) (0,0.9,0,0,0.1), G ) (0,0.9,0,0.1,0), H ) (0.1,0.8,0.1,0,0),
I ) (0,0.8,0,0,0.2), J ) (0,0.8,0,0.1,0.1), K ) (0,0.8,0,0.2,0), L ) (0,0.7,0.2,0,0.1). Color-coding of the points provides functional information.

Figure 5. Commonly used glyph attributes for high speed preat-
tentive processing.
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reductions such as from PCA. Therefore, interpretation of
data with high-dimensional visualization techniques is typi-
cally more transparent and better understandable than feature
reduction techniques. High-dimensional visualization tech-
niques also help to easily identify trends in properties
including clusters or outliers of the data set. In this paper,
visualization tools are adapted to visualize compositions for

five factors (constituent elements of catalysts) and one
response (activity of acrolein) of 1001 catalyst samples in
2D space.

Heat Maps. Visualization by heat maps is a direct
mapping method for depicting raw data. In heat maps, an
intersection of a pair of rows and columns creates a grid
associated with a pair of sample and property (Figure 2).

Figure 6. Representation of 1001 catalyst samples by a cell plot. The color corresponds to the composition and activity of acrolein of the
sample. Color codes change from blue (low value) to green to red (high value).

Figure 7. A heat map for visualization of 1001 catalysts in terms of a pentanary composition spread and catalytic activity for acrolein
formation. Hierarchical clustering analysis in this figure is based on the average-linkage algorithm and two-way clustering (i.e., clustering
for catalysts as well as variables) was performed. The figure was color coded by “blue to green to red” scheme. Thus, higher values appear
in red grids while blue codes for lower values. The high activity region for acrolein (white box marked on the right) is related to larger
Cocontents of the mixed oxides. Large amounts of Mn (white box marked on the left) lead to low activity of acrolein. This argument can
be applied for composition activity relationships for other elements as well. Note that the order of the rows and columns were determined
by cluster analysis.

388 Journal of Combinatorial Chemistry, 2009 Vol. 11, No. 3 Suh et al.
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The color of each rectangle corresponds to a value in the
samples. Therefore, it can be considered as a color-coded
data table. The order of the rows and columns is determined
by cluster analysis. By combining direct mapping of data
points onto a grid with dendrograms from cluster analysis,
heat maps are often used for visualizing microarray data in
genetics to quickly identify critical regions and hidden
interrelationships between samples or variables.

Parallel Coordinates. Parallel coordinate systems map an
N-dimensional data space (RN) onto the 2D display by
drawing N equally spaced axes parallel to one of the display
axes.10 As shown in Figure 3, a point of (c1, c2,..., cN) in
N-dimensional space is shown by polygonal lines that
intersect each x-axis. In principle, parallel coordinates are
feasible to visualize ultra high-dimensional data. However,
because a large set of polygonal lines are generally generated
by huge amounts of samples, an interaction technique is
indispensable to avoid a data cluttering problem in parallel
coordinate plots. Basic interactions with parallel coordinates
occur through the brushing technique. By selecting interesting
polygonal lines, existing correlations between axes can be

easily identified for brushed (highlighted) polygonal sets.
Other useful interaction techniques for parallel coordinates
are explained in the literature.11,12

Radial Visualization. To map out a set of multidimen-
sional points onto 2D space, radial visualization uses the
concept of Hooke’s law, which describes the spring’s
restoring force as F(x) ) -kd, where k is the spring constant
and d is the displacement. The shape of radial visualization
is similar to a trampoline. When m variables in a data set
need to be visualized, m points in radial visualization are
arranged to be equally spaced around the circumference of
the circle having a radius of 1 (Figure 4A). Each point is
called a dimensional anchor (DA, D1 to Dm). Ends of these
DAs are fixed at one point connected with m springs in a
circle. The spring constant ki is the scaled data value in each
dimension.

The location of each data point is assigned at the
equilibrium position where the sum of spring forces is zero.
This point Qi ) (xi,yi)T in Figure 4A represents the projection
in 2D space of the point in m-dimensional space (i.e., Rmf
R2). If a data set consists of m variables, radial visualization

Figure 8. (A) Parallel coordinates brushed in red for high activities (upper 50%) of acrolein. (B) Parallel coordinates brushed in red for
high contents (upper 60%) of Mn. Associations of factors and a response are visualized by brushing technique in parallel coordinates.
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creates an m-sided polygon. Pentanary compositions create
the shape of a pentagon in radial visualization and each
vertex represents a single constituent element (Figure 4B).
Some features of radial visualization are described in the
literature.1,14-16

Glyph Plot. A glyph plot is a technique to visualize high-
dimensional multivariate data in 2D or 3D space. In a glyph
plot, graphical objects (glyphs) are placed at the explicit or
implicit spatial coordinates of each data point in the data
set. The type of glyph used depends on the nature of the
data. For vector data, arrows are typically used to visualize
orientation as well as magnitude. For scalar data, geometric
primitives such as spheres or cubes are often used, but
complex shapes can also be used to visualize high-
dimensional data sets. The nonspatial data contained at each
data point is mapped to the graphical attributes of the glyph
with the goal of exploiting the viewer’s preattentive process-
ing that quickly enables them to identify boundaries, clusters,
spatial correlations, and outliers. Common glyph graphical
attributes include shape, size, color, intensity, orientation,
flicker, motion, and texture (Figure 5).17

Glyph plots conceptually can visualize high-dimensional
data utilizing many possible combinations of glyph attributes.
For applications of glyph plots for catalysis data (here from
binary to quaternary mixed oxides) in this study, we first
construct a tetrahedron for composition spreads so that
unaries (pure elements) sit on the vertices, binaries on the
edges, and ternaries on the faces of a tetrahedron.18 It should
be noted that composition spreads of pentanary systems are
not simply possible to visualize mainly because of the
dimensional limit of creating equally important composition
gradients of each of the five elements, while some strategies
to create high-dimensional gradient arrays in combinatorial
experimentation were already devised.18 In a constructed
tetrahedron, spheres as a shape are used to represent catalytic

activities, while activities of specific products are assigned
by color, size, and intensity of the spheres.

Results and Discussion

As shown in Scheme 1, the detected products of propene
oxidation at 350 °C using mixed metal oxide catalysts (from
all binaries to pentanaries) include acrolein, 1,5-hexadiene,
propionic aldehyde, and others. Prior to visualization, the
data are generally pretreated to have the same unit variance
for all variables. For the examples of visualization in this
paper, local normalization was used. Since five compositions
are already designed to change from 0 to 1, a data column
of activity of acrolein was additionally scaled from its
maximum and minimum to between 0 and 1. In Figure 6,
the resulting associations between composition and activity
are visualized by a cell plot (i.e., heat map without dendro-
gram). Since such a cell plot does not include results of
cluster analysis, the order of the rows and columns is not
changed by a dendrogram, and therefore, Figure 6 is an exact
visualized version of a color-coded catalysis data table.
Although clusters from huge samples in a cell plot are
problematic for the selection of interesting data points, this
representation of the data allows a quick visual inspection
of the performance of the catalysts.

Unlike a cell plot, a heat map as shown in Figure 7 is
designed to provide information on the association of
variables (or samples) while maintaining the concepts of a
cell plot. This is accomplished by including a dendrogram
of variables (five compositions and one activity) and samples
(catalysts) from cluster analysis. Since we focus on the
formation of acrolein in this study, five factors (compositions)
and one response (activity of acrolein) were simply visualized
in Figure 7. From the dendrogram of variables in the heat
map of Figure 7, a correlation between the activity of acrolein
and the compositions of each constituent element of catalysts
can be identified. For example, activity of acrolein is related
to compositions of elements in the decreasing order of
significance, Te > Co > Mn > Cr > Ni. In addition to that,
QCAR of interesting regions can also be directly screened
and uncovered by visual inspection from the cell plot in a
heat map of Figure 7. For example, the composition of Mn
is inversely related to the activity of acrolein (as marked
with white boxes shown with an up-arrow, where the red
and the green shades signifying inverse relationship) and
regarding the contents of Co, a high activity region for
acrolein is matched with higher concentrations of Co than
any other element (shown as white boxes with a down-arrow,
where the red shade of acrolein matches with that of Co,
signifying a direct relationship).

Parallel coordinates are shown with brushed red lines
representing high activity regions in the upper 50% of
acrolein and high contents of Mn (upper 60%) in Figure 8A
and B, respectively. Activity values of the products have been
scaled according to the highest result, that is, the best catalyst
for acrolein is set to 100% acrolein signal. For example,
acrolein is formed together with propionic aldehyde, 1,5-
hexadiene, or water, while acetone and propylene oxide
counteract acrolein formation as shown in Figure 8A. High
contents of Co lead to a higher activity for acrolein. The

Figure 9. 2D data visualization of the pentanary composition
spreads in radial visualization. The color code corresponds to the
activity values screened for acrolein. While point A is the point of
highest activity for acrolein, blue arrows are also high activity points
for acrolein.
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inverse relationship between contents of Cr and activity for
acrolein is quite notable. Although these effects can be
confirmed in a heat map (Figure 7), parallel coordinates also
provide convenient ways for feature tracking based on the
levels of catalytic activities for acrolein to identify composi-
tion-activity relationships. Figure 8B is a result after the point
of view was changed from activity for acrolein to contents
of each constituent element of catalysts. To this end, for
instance, the upper 60% of Mn was brushed with red colors
and it is obvious that samples having more than 60% of Mn
only yielded low acrolein signals, while the formation of
propylene oxide and acetone are favored.

While 2D visualization of high-dimensional catalysis data
has only been considered so far, it is equally important to
include in the visualization scheme the shape of the real
experimental design. It is invaluable to combine a composi-

tion library with high-dimensional features of catalysis data
because it gives us more chances for lead optimization of
catalysts by mimicking the experimental setup as much as
possible. Figure 9 illustrates the pentanary composition
spreads of 1001 catalyst samples in a radial visualization
scheme. The color indicates the acrolein signal measured by
GC measurements. Because of the regular sampling of the
composition space using 10% increment for five elements,
the obtained pattern in radial visualization appears as an
equilateral pentagon.

The visualization of the pentanary composition spread
in this representation allows an immediate investigation of
data trends and correlations. For example, point A in Figure
9 is the highest activity point of acrolein. From data
distribution for high activity regions with blue arrows in
Figure 9, it is identified that Co plays a more important role
for the studied reaction while contents of Mn are not very
active for acrolein formation. These results are confirmed
by parallel coordinates (Figure 8). Figure 10 is a schematic
to explain that radial visualization of composition spreads
can depict the shape of the library. Although the composition
library in the field of HTE catalyst should be adaptable for
all aspects of experiments, if the HTE library is designed
with a pentagon shape it can be easily visualized and
analyzed through radial visualization to track data trends in
terms of catalytic activities.

A 3D glyph plot of the catalyst data is shown in Figure
11. The chemical composition of four elements is mapped
to a 3D quaternary mixtures plot forming a tetrahedron. Each
data point located at one of the four vertices of the
tetrahedron represents a pure element, while interior data
points represent a mixture of the four elements. For this data
set, the composition spread was developed in a 10 mol %
wide variation. For each data point, a sphere glyph is placed
at the point’s transformed x, y, z spatial coordinates. For the
glyph plot shown in Figure 11, three activities have been
mapped to three graphical attributes of the sphere: the color
is mapped to acrolein (blue for low- and red for high
activities), the size is mapped to 1,5-hexadiene, and the
intensity is mapped to acetone. The glyph plots were created
with a custom-built software tool that allows users to
interactively modify mappings and axes of the glyph plot.

Figure 10. A schematic of the connection between HTE and visualization. For an ideal case, the slate library is fabricated having the same
shape as pentanary composition spreads in radial visualization to directly link HTE library with visualization.

Figure 11. 3D glyph plot of catalyst data. Four elements (Cr, Mn,
Co, and Te) are plotted on a 3D quaternary mixtures plot, while
three activities are mapped to three graphical attributes of a sphere
glyph: color is mapped to activities for acrolein, size is mapped to
activities for 1, 5-hexadiene, and intensity is mapped to activities
for acetone. The intensity of the glyphs is adjusted on the left plot
to accentuate the levels of acetone.

�w An interactive module for the figure is available as a web-
enhanced object and a description of the module is available as
Supporting Information.
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For example, modifying the intensity mapping from high to
low quickly shows qualitatively a strong correlation between
low acrolein levels, medium 1,5-hexadiene levels, and high
acetone levels in a particular chemical space region.

Conclusions

In this paper, we have shown how complex high-
dimensional materials data can be visualized in low-
dimensional space. With catalysis data sets generated from
HTE, we also demonstrated how to find composition-activity
relationships from huge data sets through information
visualization. Each different visualization scheme has cons
and pros. A heat map provides association between factors
and responses along with color-coded data table. While
parallel coordinates allow us to visualize data trends by
brushing techniques, radial visualization is useful to visualize
complex composition spreads in HTE. Therefore, one can
take advantage of visualization as a tool to accelerate the
interpretation of complex data sets by combining different
perspectives of data representation. In high-throughput
screening setups, much analysis data is produced within a
rather short time period such that the effective data analysis
by the researchers is of great importance. Low-dimensional
visualizations are mainly demonstrated in this work. For
further work, identification of interesting data points across
each visualization scheme will be applied for high-
dimensional data in detail based on the authors’ previous
work with the brushing technique.19 In addition, high-
dimensional glyph visualization of pentanary systems in
catalyst data will be also considered in detail.
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